AquaNES
Interface avançada de monitorização e modelização para uma concepção e funcionamento optimizados do sistema MAR/SAT de Agon-Coutainville (França)
AquaNES
Voltar
Download the practice
People in charge of the innovative practice :
Marie PETTENATI – m.pettenati@brgm.fr
The objective of the studies conducted at this demonstration site is to improve the quality and quantity of purified water by monitoring, managing, and modeling water and transfer processes in the soil and subsoil. The works included advanced chemical analysis and on-line salinity monitoring. The relevance of this combination of industrial and natural processes is studied in the framework of the AquaNES project through risk and life cycle analyses of the system. The valorization of the acquired data contributes to innovation in the water industry, and allows for efficient management of facilities within the water treatment and reuse sector.
Responsible entity
The BRGM (French National Geological Survey) is the coordinator of a work package on aquifer management. It is the French public establishment of reference in the applications of Earth sciences to manage the resources and risks of the soil and subsoil. BRGM was created in 1959. It is a public establishment of an industrial and commercial nature (EPIC). Placed under the supervision of the Ministries of Research, Ecology and Economy, it is based in Orléans in France. BRGM’s work covers several activities: scientific research, expertise, innovation and transfer, analysis and experimentation, mine prevention and safety, higher education, continuing professional education, dissemination of knowledge and open science. It employs more than 1,000 people, including more than 700 engineers and researchers, in its 27 regional offices in metropolitan and overseas France. Its teams operate in some 30 countries. Six major scientific and societal issues structure BRGM’s scientific strategy: geology and knowledge of the subsoil, groundwater management, risks and land use planning, mineral resources and the circular economy, energy transition and the underground space, data, services and digital infrastructures.
Detailed explanation
The integrated system is based on the technical treatment by an activated sludge process in the wastewater treatment plant (WWTP), consisting of a pre-screening, a pumping station, a buffer tank, a rotary screen, oil and sand separators with sand classifiers (separator basins), two aeration basins (4,000 m3), a 470 m² clarifier, a metering channel for the treated water. The WWTP treats and infiltrates via the SAT system ~2,000 m3/day varying from 500 to 5000 m3/day depending on the season and vacations. In winter, the flow is significantly higher because the WWTP also receives rainwater. On the basis of an estimated capacity of 35,300 equivalent inhabitants, the Agon-Coutainville WWTP has a maximum DBO5 treatment capacity of 2,120 kg/day. The treated urban wastewater flows by gravity to one of the three infiltration basins located outside the WWTP. Once in the infiltration basins, the treated wastewater infiltrates through the reed beds to recharge the coastal aquifers composed of a 2 to 10 m layer of Quaternary sand. The three infiltration basins are flooded alternately throughout the year.
- Demonstrating the effectiveness of secondary wastewater treatment combined with reed bed filtration with MAR/SAT on groundwater quality and quantity;
- Introducing new monitoring, data management, and subsurface modeling methods, including advanced chemical and isotopic analyses, to understand the ability of SAT to improve water quality;
- Observe the fate of viruses/pathogens and other contaminants in treatment systems;
- Evaluate the utility of the system in limiting saline intrusion in this sensitive coastal area using a hydrogeological/reactive transport model representing the state of the system;
- Represent all of these interrelationships in a customized technology and communication tool.
Future outlook
The short-term outlooks are to develop tools oriented towards governance, notably the implementation of tertiary treatment solutions on a part of the watershed, and to weight the criteria by communicating with the ARS, the Water Agencies, and the communities.
In the near future, recharge and reuse sites using non-conventional water will have to be the subject of a “site-specific” analysis in order to estimate the possibility of storage, reuse, and the associated environmental costs/benefits and co-benefits.
Institutional setting
The project partners are BRGM, Antea Group, ImaGeau, MicroLan, BioDetection Systems, Cranfield University, Berlin Water Competence Centre, with the help of the municipality of Agon-Coutainville, SAUR and the Coutainville golf course.
Geographical setting
The demonstration site is located in Agon-Coutainville. The commune of Agon-Coutainville is located in France in Normandy, along the western coast of the Manche, between the Pointe de la Hague and the Bay of Mont Saint Michel. The demonstration site is located near a shellfish farming area and consists of a full-scale operational wastewater treatment plant and a MAR/SAT system. The secondary treated wastewater is discharged into a natural reed bed from which it infiltrates the coastal aquifer. The extracted water is then used for golf course irrigation.
Historical overview
2016: European funding under the Horizon Europe program, approval number 689450.
One of the key factors that allowed the implementation of this practice is the site of Agon-Coutainville, which is a fragile environmental area since the 90’s and for which it was essential to avoid any discharge. At this site, there was a natural reed bed (2000 m²) in which it was decided to infiltrate wastewater treated by an activated sludge treatment.
The obstacles to the implementation of this solution were mainly financial. Indeed, the financing levers were not well adapted for a reproduction of the approach at the time. On the other hand, the AquaNes project was developed on a pilot scale over a period of 3 years.
Evidence of benefits from implementation
There are advantages of using this innovative practice including a financial gain. The data collected confirm that the SAT system results in an additional reduction in salinity (P50 Cl: 550 mg/L for the WWTP outlet, 125 mg/L in the observation wells), in Escherichia Coli (E.Coli) concentrations up to 2.5 orders of magnitude and in regulated nutrient concentrations (e.g. NO3, Ptot) up to one order of magnitude. Micropollutants, primarily discharged from the WWTP, generally had higher (median) concentrations in the treated wastewater (WWTP outlet), exceeding the recommended environmental quality standards (EQS) for carbamazepine (CBZ) and diclofenac (DIC). The SAT system, in combination with natural recharge, significantly reduces concentrations of contaminants of concern such as benzotriazole, CBZ, and DIC concentrations, which overall fall below the recommended threshold values defined by the EQS. The decrease in concentrations is likely due to the combined effect of dilution of treated wastewater in the aquifer and biogeochemical reactions (sorption and/or degradation).
Replication potential in SUDOE region
The project has a reproducible character, mainly at a large scale (big cities). The human resources implemented require different levels of complementary expertise: researchers, research engineers, technicians, computer scientists, geochemists, hydrogeologists.
Key points of the innovative method
> Combination of natural processing and engineered systems
> Monitoring and modeling interface
> Controlled recharge of an aquifer
Acknowledgements
The innovative practice was suggested by Marie PETTENATI (BRGM) who also participated in the interview.
References
Fiche de demonstration du site d’étude: http://www.aquanes-h2020.eu/UserFiles/files/Site%208%20Agon%20Coutainville.pdf
Projet AquaNES : http://www.aquanes-h2020.eu/Default.aspx?t=1593
aquifer
NOTÍCIAS
Descubra mais sobre as notícias do projeto AQUIFER e sobre a gestão de aquíferos
NOTÍCIAS AQUIFER
Descrição e objectivos do projecto
The scientific community recommends a substantial improvement in the knowledge of aquifers, the establishment of reliable monitoring networks and a greater involvement of the administration and users to achieve a sustainable management of aquifers. The main objective...
Informação sobre o projecto
A Comunidade de Utilizadores de Água do Delta Llobregat concebeu bacias de recarga em Molins de Rei para recarregar o aquífero do Baix Llobregat. Vista de uma das bacias de recarga durante a fase de teste A Comunidade de Utilizadores de Água de Llobregat Delta é um...
Histórias de sucesso na gestão das águas subterrâneas
Compilação de histórias de sucesso na gestão das águas subterrâneas. Ao longo do mês de Abril, os 30 casos de práticas inovadoras na gestão das águas subterrâneas já foram seleccionados pelos agrupamentos que participam no projecto: PPA, CWP e AV. A tarefa começou com...
PROPONHA UMA
PRÁTICA INOVADORA
Está a desenvolver ou implementar uma prática inovadora em matéria de gestão de aquíferos e deseja referência-la na plataforma do projeto AQUIFER?
Preencha o formulário e faça uma proposta aos parceiros do projeto AQUIFER.
THE E-BOOK
O Aquífero oferece uma gama de práticas inovadoras de gestão da água. Pode descarregar todas as nossas fichas técnicas aqui.
E-BOOK DE PRÁTICAS INOVADORAS
DOCUMENTAÇÃO
Aprofunde a informação relacionada com a gestão dos aquíferos